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I observe that the high-temperature expansions of the U = « Hubbard model on two- and three-
dimensional bipartite lattices are consistent with a strong separation of energy scales for spin and
translational degrees of freedom at an electron density n near % The high-temperature expansion

of the specific heat is nearly identical with the high-temperature expansion of spinless fermionic
holes of density 1—n, while the expansion of the uniform magnetic susceptibility is nearly identical
with the susceptibility of free spins. Previous finite-size calculations are also consistent with this re-

sult.

The single-band Hubbard model in the strong-
correlation (U= o) limit is important theoretically if
only because it is the simplest model of interacting fer-
mions. Unfortunately, very little is understood about the
ground state or thermodynamics of this model on lattices
of more than one spatial dimension. In one dimension,
the thermodynamics of the U= Hubbard model is
very different from that of a conventional Fermi liquid.
In a Fermi liquid, electrons fill up renormalized energy
levels with one spin-up and one spin-down electron per
level. Therefore, spin and translational (sometimes called
“charge”) degrees of freedom will freeze out of the entro-
py at the same basic temperature scale—the Fermi ener-
gy. At low temperatures, only the electrons near the Fer-
mi energy can respond to a uniform magnetic field, so the
susceptibility saturates to its Pauli value.

Consider, on the other hand, the U= « Hubbard mod-
el on a one-dimensional chain with free boundary condi-
tions. To establish notation, I write the standard single-
band Hubbard Hamiltonian,

H=—t 3 (c}e;ptc)ei)+U S nin;, (1)
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where (ij) indicates that the sum is over nearest neigh-
bors, o is up or down spin, and the c*’s, c’s, and n’s are
fermionic creation, annihilation, and density operators,
respectively. The system consists of N electrons on N;
sites. The condition of U= o corresponds to the con-
straint that no two electrons, even of opposite spin, be on
the same site. Finally, we set our energy units such that
t=1.

It is obvious that because of the U=« constraint,
spins on a one-dimensional chain cannot switch places so
the order of up and down spins cannot change. In fact,
the Hamiltonian matrix for a given spin configuration
will clearly be identical to the Hamiltonian for N, -Ng
spinless fermionic holes. The spin degrees of freedom
simply add an overall entropy of NzIn2 and respond to a
uniform magnetic field exactly like free spins—with a
susceptibility which behaves like N /T. Thus, the spin
and translational degrees of freedom of the U= o« Hub-
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bard model on a one-dimensional chain are completely
decoupled.! The specific heat consists of only the contri-
bution from the spinless fermionic holes, while the uni-
form susceptibility is simply that of free spins, with no
Pauli-like saturation at low temperatures.

A great deal of theoretical attention has recently fo-
cused on the single-band Hubbard model in two or three
dimensions following Anderson’s initial suggestion of its
importance for understanding high-temperature super-
conductivity in cuprate materials.> Anderson has also ar-
gued that the behavior of the Hubbard model in two or
three dimensions should display similarities with the be-
havior in one dimension—particularly with respect to
the separation of translational (“holon”) and spin (“spi-
non”) degrees of freedom.’ In this paper, I analyze the
exact high-temperature expansion of the specific heat and
uniform susceptibility of the U= o Hubbard model on
the square, simple cubic, and BCC lattices, and observe
that near a hole concentration of about X, the energy
scales for translational and spin degrees of freedom are
indeed decoupled. To be more specific, near this hole
concentration, the specific-heat expansion is almost ex-
actly identical to the specific-heat expansion for spinless
fermions with a concentration corresponding to the con-
centration of holes, and the uniform susceptibility expan-
sion is almost exactly identical to the susceptibility ex-
pansion for free spins. I also show that these results are
consistent with existing finite-size studies of the ground-
state properties of this model.

Kubo and Tada* have constructed exact high-
temperature expansions for the specific heat and uniform
susceptibility at arbitrary filling n =Ny /N, for various
two- and three-dimensional lattices. Inspired by the ex-
act results in one dimension, I have compared these ex-
pansions with the corresponding expansions obtained to
the same order on the square, simple cubic, and bcc lat-
tices for spinless fermions of density ny;=1—n and free
spins of density n. These expansions are simple to obtain
in principle, but somewhat tedious to obtain in practice,
so I present them later.

On a d-dimensional lattice the density of free spinless
fermions is given by

9397 ©1990 The American Physical Society



9398 JONATHAN S. YEDIDIA 41

TABLE 1. The polynomial coefficients C; (n) in the expansion for the specific heat of spinless fermions.

Square
C,(n)=4n—4n*
C,(n)=—6n—6n2+24n3—12n*

2
Ce(n)=2gl+lg()n——200n3+300n4—240n5+80n6

_ —7In_ 5215n 4487n _ 9779n*

c
(M =7 36 9 18

—196n°+980n°—784n"+196n°

Simple cubic

C,(n)=6n—6n"

C,(n)=—9n—45n*+108n>—54n*
Cs(n)=10n+95n2+450n>—1875n*+ 19801 °— 660n

—_ 2 3 4
Cyln)= ;7” - 102" — 50323" + 79743" +14994n5—31458n°+22 680n" — 56701

bcce
Cz(n)=8n —8n?
C,(n)=12n—276n*+528n°—264n*

— 2
Coln)= 3320" + 104077 | S600n 7 — 18000n* + 18 240n5— 6080n ©
2 3 4
Cyln)= 3929” + 21 51785" - 244(;06” _ 562 9977” +480 2001 ° — 785 960n 6+ 536 480n 7 — 134 120 ®
_pn dky oq dk, - dkg 1 tains the corresponding expansion for the chemical po-
2 O Sy S S 'f_" 27 1+exp(Ber—p)] tential. One can then substitute that into the equation for

the energy of free spinless fermions:

2) EN=[" dk, .. dk,
where B=1/T is the inverse temperature, u is the chemi- L=J o Jdr2n
cal potential, and dk €
X f ’ 2 : 1+ I; —u)]
—2[cos(k,)+cos(k,)], -7 27 exp[Ble, —p)] @
gy = |~ 2[cos(k;)+cos(ky)+cos(ks)] , 3) Expanding around B=0 and then differentiating with
—8cos(k)cos(k,)cos(ks) respect to temperature one finally obtains the expansion
. . . . C/N. =Cy(ny)B*+Cylny)
for square, simple cubic, and bcc lattices. By inverting L 2(ny)B “ 1ty B
the high-temperature expansion of the density, one ob- +Cylny)B+Cylng)B+ - -, (5)

TABLE II. The polynomial coefficients 4, (n) in the expansion of the deviation of the U= o susceptibility from the susceptibility
of free spins.

Square
Auin)= n(1—n)(—8+11n)
Wn)=
6
A (n)= n*(1—n)(256—496n +380n*—2191°)
o(n)=

120
Ag(n)=[n¥1—n)(—216192+377336n+111216n%—1156 744n>+1511040n*— 563 045n°)]/80 640

Simple cubZiC
Aum)=" (1—n)(—8+11n)

2
(1—n)(256+3748n —8940n2+4631n°)
120
Ag(n)=[n*(1—n)(43392—1284872n —2789392n2+ 14279 816n°— 14448 064n*+43109131°)] /26 880

2
Ab(n)z L

bce
A n)=nY1—n)—16+22n)
_ n*(1—n)(—352+17204n —36780n2+19177n°)
Aetm)= 60
Ag(n)=[n*(1—n)(130464—153076n —7286 142n>+21511885n°—20641036n*+ 64769691 °)]/1680
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TABLE III. The polynomial coefficients B, (n) in the expansion of the deviation of the U= « specific heat from the specific heat

of spinless fermionic holes.

Square

B,(n)=n*1—n)8—11n) -

B.(n)= n3(1—n)(—512+992n —708n>+381n°)
¢ 16

Bye(n)=[n%1—n)(216192—233976n —774 128n*+2266 620n>—2 373 336n*+842219n°)] /2880

Simple cubic

B,(n)=n*1—n)24—33n)

B.(n)= n*(1—n)(—512—7496n +18452n>—9889n°)
o(n)=

16
By(n)=[n%1—n)(—43392+1714952n + 1805 840n2— 15419 068n >+ 17916 120n*— 6060 783n°)] /960

bce

B, (n)=n*(1—n)(96—132n)

Be(n) n2(1—n)(704—34408n +75484n*—40463n°)
6

8
By(n)=[n*1—n)(—260928+1166312n + 12 683 788n2—45099 583n°+47 712 480n*—16241258n°)]/120

where the polynomials C;(ny) are listed in Table I for
the square, simple cubic, and bcc lattices. Note that
these expansions are symmetric around ng /2, so we have
replaced ny =(1—n) with n. Of course, as mentioned be-
fore, the susceptibility of free spins is simply

x/N,=n/T . 6)

Using Kubo and Tada’s results for the susceptibility and
specific heat of the U=« Hubbard model, we can write
the deviation of the true U= o results from our model of
spinless fermionic (SF) holes and free spins as

XT/Ny—n=A,(n)B*+ Ag(n)B°+ Ag(n)Bs+ -+ (1)
and
[C(U= 2)—C(SF)]/N, =B,(n)B*+B¢(n)p°
+Bg(n)B+ -, (8)

where the polynomials A4,(n) and B,(n) are given in
Tables II and III for the square, simple cubic, and bcc
lattices. In one dimension these polynomials are all
strictly zero. Note that the deviations of the true U= oo
expansions from the theory of spinless fermions plus free
spins does not begin until order B* for both expansions—
which is the order at which an electron can first hop
around in a loop. The polynomials 4;(n) and B, (n) are
all of order n? for small n and of order ny for small ny.
Note also that all the 44(n) and B,(n) are zero at pre-
cisely n=2L. Clearly the A,(n) and B,(n) terms arise
from the simple loop diagram, but it was not obvious a
priori that they should vanish at the same density.

In Figs. 1 and 2 I plot the polynomials A,(n) and
B, (n) for k=4, 6, and 8 for the square, simple cubic, and
bee lattices. The crucial point to notice here is that all
these polynomials (especially in three dimensions) are
nearly zero at an electron density of n = X. This is the
main observation of this paper—that near n =23, the

specific-heat expansion of the U= « Hubbard model on

the square, bcc, or simple cubic lattices is almost exactly
the same as the specific-heat expansion of spinless fer-
mions of density ny, while the susceptibility expansion is
almost exactly the same as the susceptibility of free spins.

The conclusions for nonbipartite lattices like the tri-
angular or fcc lattices would be different. Looking at
Kubo and Tada’s expansions, we see that there exist low-
order terms in the susceptibility expansion that never
vanish.

If the U= o« Hubbard model at hole densities ny near
< is indeed well described by spinless fermionic holes and
free spins down to low temperatures, then the energies of
the ground states with different S, (total spin pointing in
the z direction) should be roughly degenerate around this
hole density. Finite-size studies of the ground-state prop-
erties of the U= o Hubbard model are indeed consistent
with this picture. Takahashi® considered various two-
and three-dimensional clusters with free boundary condi-
tions, while Riera and Young6 studied square clusters
with periodic boundary conditions. Examining their re-
sults for their largest square clusters, we notice that in
Takahashi’s 3 X4 cluster, the ground states with different
S, when there are three holes are nearly degenerate.
Specifically, the relative spread of the energies of the
ground states with different S, is only 0.6% (from
—6.71023 to —6.669 10), compared to a relative spread
of 10.3% (from —9.248 97 to —8.300 56) when there are
six holes. Similarly, we notice that for five holes in Riera
and Young’s 4X 4 lattice, the relative spread of the ener-
gies of the ground states with different S, is only 2.1%
(from —12.15913 to —11.908 19) compared to a relative
spread of 16.4% (from —14.06053 to —12.0) for eight
holes. It is also interesting to note that for the case of
three holes in the 3X4 cluster or five holes in the 4X4
cluster, the energy is not a monotonic function of S,, in-
dicating that the energy is ‘““trying” to remain as flat as
possible as a function of S,.

Given our current ignorance of the zero-temperature
phase diagram of the U= c Hubbard model as a func-
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FIG. 1. A;(n) for k=4, 6, and 8 as functions of n. (a) Square, (b) simple cubic, (c) bec.
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tion of n in more than one dimension, there are several
possible interpretations of the results presented here.
One more or less “conventional” possibility is that the
special density around & that we are focusing on is the
critical density separating a Nagaoka-like’ ferromagnetic
phase and a Fermi-liquid phase. Shastry, Krish-
namurthy, and Anderson® have studied the stability of
the fully saturated ferromagnetic state against a single
spin flip and have constructed a trial wave function
which has lower energy than the fully saturated fer-
romagnetic state at n=0.51 for the square lattice,
n=0.68 for the simple cubic lattice, and n =0.68 for the
bee lattice. Since the true ground state with a single spin
flip will have a lower energy than their trial state, the true
critical density for instability of the fully saturated fer-
romagnetic state will be greater than these numbers. Ac-
cording to the picture described in this paper, the fully
saturated ferromagnetic state should be marginally stable
near n=0.73, so my results are completely consistent
with those of Shastry et al. Given the closeness of my
critical density and theirs in three dimensions, it may be
that their trial wave function is very good for three di-
mensions.

If the critical density around n =2 is merely a transi-
tion point between ferromagnetism and Fermi-liquid be-
havior, it remains to be explained why this transition
point should have such strong separation of energy scales
for translational and spin degrees of freedom. A second
possibility is that there is an entire resonating-valence-
bond (RVB) phase centered around n = £ that extends to
both greater and lesser densities and has other features
that distinguish it from a Fermi liquid, such as an n(k)
distribution which is more like the n(k) of the one-
dimensional U= c Hubbard model® than like a Fermi
liquid.

One standard RVB picture is that holons are bosonic,'°
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but in this paper I have compared the specific heat to the
specific heat of spinless fermions. In one dimension spin-
less fermions are equivalent to hard-core bosons, so it
would be interesting to compare the high-temperature ex-
pansion of the specific heat of the U= o Hubbard model
with the corresponding expansion of hard-core bosons of
fixed density in more than one dimension. Another possi-
bility is that holons are anyons.!! Unfortunately, how to
construct high-temperature expansions even for free
anyons is an unsolved problem.

Various other extensions of this work are possible. In
particular, it would be interesting to extend the U= o
expansions to higher order to see to what order these re-
sults persist. It would also be interesting to develop long
expansions for arbitrary U (see Ref. 4 for expansions to
order B%. For large U, one would expect that the picture
presented here would remain valid in the regime where
U>>T>>t?/U. Finally, one might wonder what hap-
pens as the spatial dimensionality is increased above
three.

In conclusion, we have seen that for bipartite lattices
(especially in three dimensions), the U= Hubbard
model has a strong separation of energy scales for spin
and translational degrees of freedom at a density near
n=_L. The high-temperature expansion of the specific
heat is almost exactly identical to the high-temperature
expansion of spinless fermions of density 1—n, and the
high-temperature expansion of the susceptibility is almost
exactly identical to that of free spins.
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